Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Traditional approaches to undergraduate-level quantum mechanics require extensive mathematical preparation, preventing most students from enrolling in a quantum mechanics course until the third year of a physics major. Here we describe an approach to teaching quantum formalism and postulates that can be used with first-year undergraduate students and even high school students. The only pre-requisite is a familiarity with vector dot products. This approach enables students to learn Dirac notation and core postulates of quantum mechanics at a much earlier stage in their academic career, which can help students prepare for careers in quantum science and engineering and advance the Second Quantum Revolution.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract Advancements in materials synthesis have been key to unveil the quantum nature of electronic properties in solids by providing experimental reference points for a correct theoretical description. Here, we report hidden transport phenomena emerging in the ultraclean limit of the archetypical correlated electron system SrVO3. The low temperature, low magnetic field transport was found to be dominated by anisotropic scattering, whereas, at high temperature, we find a yet undiscovered phase that exhibits clear deviations from the expected Landau Fermi liquid, which is reminiscent of strange-metal physics in materials on the verge of a Mott transition. Further, the high sample purity enabled accessing the high magnetic field transport regime at low temperature, which revealed an anomalously high Hall coefficient. Taken with the strong anisotropic scattering, this presents a more complex picture of SrVO3that deviates from a simple Landau Fermi liquid. These hidden transport anomalies observed in the ultraclean limit prompt a theoretical reexamination of this canonical correlated electron system beyond the Landau Fermi liquid paradigm, and more generally serves as an experimental basis to refine theoretical methods to capture such nontrivial experimental consequences emerging in correlated electron systems.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            KTaO3heterostructures have recently attracted attention as model systems to study the interplay of quantum paraelectricity, spin-orbit coupling, and superconductivity. However, the high and low vapor pressures of potassium and tantalum present processing challenges to creating heterostructure interfaces clean enough to reveal the intrinsic quantum properties. Here, we report superconducting heterostructures based on high-quality epitaxial (111) KTaO3thin films using an adsorption-controlled hybrid PLD to overcome the vapor pressure mismatch. Electrical and structural characterizations reveal that the higher-quality heterostructure interface between amorphous LaAlO3and KTaO3thin films supports a two-dimensional electron gas with substantially higher electron mobility, superconducting transition temperature, and critical current density than that in bulk single-crystal KTaO3-based heterostructures. Our hybrid approach may enable epitaxial growth of other alkali metal–based oxides that lie beyond the capabilities of conventional methods.more » « less
- 
            Abstract Strongly correlated electronic systems exhibit a wealth of unconventional behavior stemming from strong electron-electron interactions. The LaAlO3/SrTiO3(LAO/STO) heterostructure supports rich and varied low-temperature transport characteristics including low-density superconductivity, and electron pairing without superconductivity for which the microscopic origins is still not understood. LAO/STO also exhibits inexplicable signatures of electronic nematicity via nonlinear and anomalous Hall effects. Nanoscale control over the conductivity of the LAO/STO interface enables mesoscopic experiments that can probe these effects and address their microscopic origins. Here we report a direct correlation between electron pairing without superconductivity, anomalous Hall effect and electronic nematicity in quasi-1D ballistic nanoscale LAO/STO Hall crosses. The characteristic magnetic field at which the Hall coefficient changes directly coincides with the depairing of non-superconducting pairs showing a strong correlation between the two distinct phenomena. Angle-dependent Hall measurements further reveal an onset of electronic nematicity that again coincides with the electron pairing transition, unveiling a rotational symmetry breaking due to the transition from paired to unpaired phases at the interface. The results presented here highlights the influence of preformed electron pairs on the transport properties of LAO/STO and provide evidence of the elusive pairing “glue” that gives rise to electron pairing in SrTiO3-based systems.more » « less
- 
            After the passage of the U.S. National Quantum Initiative Act in December 2018, the National Science Foundation (NSF) and the Office of Science and Technology Policy (OSTP) recently assembled an interagency working group and conducted a workshop titled “Key Concepts for Future Quantum Information Science Learners” that focused on identifying core concepts for future curricular and educator activities to help precollege students engage with quantum information science (QIS). Helping precollege students learn these key concepts in QIS is an effective approach to introducing them to the second quantum revolution and inspiring them to become future contributors in the growing field of quantum information science and technology as leaders in areas related to quantum computing, communication, and sensing. This paper is a call to precollege educators to contemplate including QIS concepts into their existing courses at appropriate levels and get involved in the development of curricular materials suitable for their students. Also, research shows that compare-and-contrast activities can provide an effective approach to helping students learn. Therefore, we illustrate a pedagogical approach that contrasts the classical and quantum concepts so that educators can adapt them for their students in their lesson plans to help them learn the differences between key concepts in quantum and classical contexts.more » « less
- 
            The thermoelectric properties of quasi‐1D electron waveguides at the LaAlO3/SrTiO3interface at millikelvin temperatures are investigated. A highly enhanced and oscillating thermopower is found for these electron waveguides, with values exceeding 100 μV K−1at 0.1 K in the electron‐depletion regime. The Mott relation, which governs the band‐term thermopower of noninteracting electrons, agrees well with the experimental findings in and around regimes where strongly attractive electron–electron interactions lead to a previously reported Pascal series of conductance explained by bound states of electrons. These results pave the way for quantized thermal transport studies of emergent electron liquid phases in which transport is governed by quasiparticles with charges that are integer multiples or fractions of an electron.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
